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Time dependent coupled Hartree-Fock (TDCHF) theory is applied to calcu-
late frequency dependent polarizabilities, transition energies, oscillator
strengths and effective quantum numbers of several excited states of the open
shell ions Al Si*, P*', §**, CI**, Ar"", Cl and Ar" in the *P state within and
beyond the normal dispersion region. The Roothaan formalism has been
adopted to deal with the open shell problem. The excitation energies are
extracted from the positions of the poles of an appropriate functional. Analytic
representations of the singly excited Rydberg states have been found. The
results obtained compare well with spectroscopic and other elaborate theoreti-
cal data wherever available. Inner shell excitations have been found for the
first time within TDCHF theory.
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1. Introduction

Knowledge of highly excited states of many electron systems is limited [1].
However recent experiments using beam foil [2-8], tunable lasers [9-11] and
other methods [12, 13] provide very useful information about the excited states
of such systems. Such studies are of interest for a number of reasons e.g. in the
interpretation of the spectra of solar flares [14-18], and in the calculation of
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radiative and forbidden decay rates and collision strengths for electron impact
excitation of highly charged ions (such as occur in astrophysical observation or
laser produced plasmas [19-21] and high temperature tokamak plasma [22-24]).
They are particularly useful for the estimation of energy loss in controlled
thermonuclear plasmas, determination of electron temperature and density of
solar corona, fusion plasma diagnostics, and for the estimation of relative abund-
ance of elements [25-28]; [29] is a good review on the subject.

Lines of neutral and ionised atoms of the 3p open shell are quite dominant in
the emission and absorption spectra of the solar photosphere and chromosphere
[14, 15, 30, 31]. Many of these lines have been recorded by space shuttle
experiments [32]. Very recent experiments, using Copernicus and International
Ultraviolet Explorer [IUE] satellites, on intersteller matter [33, 34], and observa-
tion on the extreme ultraviolet spectrum of the Jupiter planetary system during
Voyager 1 and 2 encounters [35,36] reveal the presence of many such ions.
Laboratory experiments on such systems are also in progress [37-39]. These
observations are useful for detecting low density clouds in interstellar medium,
stellar winds and the absorbing material in front of some quasars and Syefert
galaxies and also for determining the abundance of elements in it.

Because of their importance, theoretical studies on such systems are quite interest-
ing. Most of the few such studies which have been performed have been confined
to the determination of accurate oscillator strengths by configuration interaction
(CI) methods [30, 31, 40-48], multiconfiguration Hartree- Fock (MCHF) calcula-
tions [49-51], relativistic parametic potential methods with CI[52], close coupling
method [53] etc. All these calculations show explicitly the importance of configur-
ation mixing for the assignment of spectral terms and calculation of oscillator
strengths.

TDCHEF theory has been found very successful in the past for estimating frequency
dependent response properties particularly for closed shell ions and ions having
an s electron in the open shell [54-58]. Application to p and other open shell
systems is rather limited [59]. In addition to the dynamic polarizability which is
very important for estimating several interesting properties of the system [60],
the method can yield the correct static limit of the polarizability values, transition
energies and transition properties, such as allowed and forbidden transition
probabilities, and furnish reasonably accurate quantum defects and analytic
representations of the singly excited Rydberg states. (By Rydberg orbital we mean
any orbital outside the valence shell [61].) The excited states may be utilised for
calculating expectation values of different operators and are useful in perturbation
theory and for estimating collision cross sections. The theory is successful mainly
because of its implicit inclusion of eertain classes of correlation diagrams [62]
which are present in the random phase approximation (RPA) method [63]. We
shall apply TDCHF theory here to estimate the Rydberg states and transition
properties of few ions of 3p open shell system. The closed shell theory is well
known. The salient features of the open shell theory is described in Sect. 2 and
the results are discussed in Sect. 3.



Dynamic polarizabilities and Rydberg states 433

2. Method

The open shell system is described by the usual non relativistic Hamiltonian Ho.
An external perturbation of the form

H'(r,t)=G(r) e ™ +cc. (1)

is imposed on the system. We are interested in dipolar excitations from the ground
state and we take

N
G(r)=A ¥ rPycos 6, (2)
i=1
where A is an appropriate perturbation strength parameter. We adopt the
Roothaan scheme [64] to describe the ground state of open shell system. This
scheme reduces “s” or “p” type open shell energies to that of an effective closed
shell energy with certain parameters in the energy expression which take care of
the open shell structure. The external perturbation of Eq. (1) admixes first order
corrections 8y to the ground orbital ;. These oscillate with the two components
given by Eq. (1). Frequency dependent response properties are obtained by taking
the Fourier transform of the time dependent problem as follows:
[* (®|H —i o/ dt|®)

1
J==
T

T @)

(3)

where @ is the total wavefunction and H is the total Hamiltonian. Atomic units
are used here. The details of the theory was discussed earlier [59]. Variation of
the functional J of Eq. (3) with respect to parameters introduced in 8¢ yields
the perturbed admixtures of [59]. In terms of orbitals the dynamic polarizability
is given by

ay(w) =§ [(8¢x|r cos 8lyn)+(8yi|r cos 8]¢n)]. (4)

a4(w) passes through poles at certain frequencies which correspond to natural
excitations of the system. From the pole positions one can extract transition
energies, singly excited wavefunction and other properties connected with
transitions.

3. Results

In the present communication we confine our analysis to ions having *P ground
states e.g. Al, Si*, P, $°*, CI*", Ar’", Cl and Ar". Although all these ions are
all described by the °P ground configuration, their excitation properties are
different. For the isoelectric series of aluminium the excitation of the valence 3p
orbital leaves a closed shell core 3s°:'S, but that of Cl sequence leaves an open
shell core 3p* which has different valence excited LS coupled states resulting in
a very complex final spectrum. For the Al sequence we studied excitations 3p - ns
(n=4,5,...,7) and 3p>nd (n=3,4,...,7) while for Cl and Ar*, we obtained
a smaller number of transitions as will be apparent from subsequent tables. The
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ground state wavefunctions are taken from Clementi and Roetti [65]. The radial
parts of the first order admixtures to the ground state are represented as linear
combinations of Slater bases viz.

SUE(r) =X Cir exp (~Lur). )

Where the C; are linear variation parameters. The exponents n; and [, are
preassigned. The choice of n; depends upon the angular symmetry of the orbital
8. Once a starting n is fixed one can include higher powers depending on the
number of nodes. The choice of maximum and minimum {x depends roughly
on the short and long range behaviour of the wavefunction. There are in general
no strict guidelines for an appropriate choice but the optimised ground exponents
of Clementi and Roetti [65] together with experience give a guideline. Once the
maximum and minimum value of the exponents are chosen intermediate ones
can be appropriately chosen. Further it is observed from a large number of
calculations [54-59] that given a sufficiently flexible exponent set the choice of
the maximum value of the exponent is not very critical. The innermost core 1s
is assumed frozen. To test the method we calculated the static limit of the dynamic
polarizability a4(®), .o for all the ions and compared them in Table 1 with
existing CHF static results of Roy et al. [66]. Roy et al. used 8 parameters for
the representation of perturbed valence admixtures, we used a similar basis set
to compare with their values. As observed form Table 1, the static limit is in
excellent agreement with the static values for all ions whose data exists. To test
the basis set convergence we performed two sets of calculations for Al and Cl.

o s . .
For the excitations p;' J types we used 12 or 15 parameter representations while

for the excitations s— p type we used only 8 or 10 parameter representations.
The variations of the core admixtures usually does not affect the polarizability
values. From the results in Table 1, we notice that fairly good convergence of
polarizability values is achieved for Al with 15 parameters while for the ions

Table 1. Static limit of dynamic polarizability ag(®),_o

Ion Present static limit Other static results
(A% (A%

Al 8.68%, 9.09°, 9.11° 8.71¢

Sit 2.90%, 2.92° 2.93¢

P>t 1.427, 1.42° 1.43¢

s3* 0.82%, 0.82°

Ccr* 0.53%, 0.53°
At 0.36%, 0.36°
cl 1.982, 2.08°, 2.08° 1.97¢
Art 0.99%, 1.00°

# 8 parameter calculation
12 parameter calculation
°15 parameter calculation
4166]



Dynamic polarizabilities and Rydberg states 435

variation of parameters from 8 to 15 does not affect the results much. Hence in
our subsequent calculations we have used 12 and 15 parameter representations
for Al and Cl and for all other ions we used the 15 parameter representation for
the valence perturbed admixture. In Table 2 we have listed the dynamic polariza-
bility values for all the ions with respect to incident frequency in the normal
dispersion region. The positions of the first poles are clearly indicated by a change
in sign of the polarizability values. It is further observed that only very near to
poles does the functional representation by 12 or 15 parameters affect the polariza-
bility values, although the pole position is practically unaffected. In Table 3 we
list for the Al isoelectronic series up to Ar’" the transition energies obtained from
the position of the poles in dynamic polarizability calculation, the oscillator
strengths in length form and effective quantum numbers n* for the Rydberg
orbitals. The transition energies are compared with available [67, 68] spectro-
scopic data. Agreement is obtained for all the cases to within 5%. The deviation
usually decreases as we proceed along the higher Z isoelectronic members. We
missed a few resonances, e.g., for Al7d, for Si* 7s and for P** 6d and 7d. This
is probably due to existence of other transitions in that region which effectively
mask these transitions. The oscillator strengths are evaluated using the dynamic
polarizability values [69]

calw) =3 =0 (©)
n Wy~ W

The method of extracting oscillator strengths from Eq. (6) is detailed in earlier
calculations [59]. The oscillator strengths compare reasonably with the existing
data using elaborate CI calculations, experiments and other sophisticated results
except for 3p > 3d transitions. Here we get somewhat larger values. The reason
is well known in CI studies. It was shown by Weiss [40] and subsequently by
other workers [30, 31, 41-53] that a very strong perturbation is caused by 3s3p?
terms. One must include such configurations explicitly to obtain better results
for oscillator strengths. The effect is most prominent for Al 3s— nd series. The
TDCHEF theory, which is equivalent to the RPA method [63], does not take care
of such correlations explicitly resulting in errors in the oscillator strengths. The
oscillator strengths are consistently better for the 3p - ns transitions. The effect
of 35> 3p mixing is very apparent in our numerical results. We notice in most
cases a strong mixing of dipolar matrix elements from the 3s shell contributing
to total polarizability values near the poles corresponding to different excitations.

The effective quantum number n* for the Rydberg orbitals are calculated using
the formula n* = Z_5/v/2e, where ¢ is the ionisation potential of the orbital and
Z.s is the effective charge. Zz=1 in the complete screening model for a neutral
atom. These are compared with similar quantities obtained from spectroscopic
data [67, 68]. Consistent results are obtained.

In Table 4 we list similar results for Cl and Ar* in the P state. The situation is
more complex here because of different multiplets associated with the dipolar

_» 118

transitions 3p° > 3p* .
p P Snd

Here the spin of the excited electron is unrestricted
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and hence the core (2p*) must be in such a state as to produce the same multiplicity
for the initial and final states. This left the singlet as the possible multiplicity of
the (2p*) configuration. Energetically ' D is more favourable as we observe from
the table. For C1'S the valence excited states are also pretty high in energy.
Experimental transition energies are obtained from the compilation of Bashkin
and Stoner [68]. The excited states we are interested in are very high and we get
fewer resonances than in the Al sequence, but agreement of transition energies
is within 5% in all cases where data exist. Our oscillator strengths are poor here
because of the neglect of the very strong CI mixing of 35*3p° > 353p°® configuration
which was explicitly shown by other workers [48, 71-75] to be extremely important
for any such calculation. This is also explicitly apparent in our calculation and
we get very strong dipolar 3s - np mixing resulting in large change of the dipolar
matrix elements. It appears that there is significant cancellation among such
matrix elements. The effective quantum numbers agree well with the results
obtained by Rusic and Berkowitz [76], calculated using the series limit given by
Hansen et al. [77]. For Ar" there is practically no data available for the transitions
with which we are concerned. Most of the experimental work was restricted to
the 3p*4p configuration of Ar" [78].

In the present calculation we get resonance in the polarizability values for
transitions corresponding to 3s - 3p. This has not been seen in TDCHF calcula-
tions reported so far. The transition energies are about 8 to 10% away from
experimentally observed energies for Al series, however for Ar* there is much
more error. The level is autoionising for Al and Cl. As we have neglected
configuration interactions the oscillator strengths are inaccurate and we have not
quoted them here. We may only point out that the functional representation of
the 3s excited 3p orbital is very similar to that of the occupied 3p orbital of
Clementi and Roetti [65]. For comparison we give in Fig. 1 such a plot for Al
atom. In this case the 3s5->3p excitation energy lies beyond the 3p ionisation
limit. A very close similarity is observed. It is further observed that our computed
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Fig. 1. Plot of the inner shell (3s)
excited 3p function and that of
ground state function 3p of
Clementi and Roetti against r.
The solid line represents our
function while the dotted one
corresponds to that of Clementi
rla. u. ] and Roetti
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orbital is more diffuse than that of Clementi and Roetti [65], as is physically the
case. We hope to present more detailed results on such transition later on.

4. Conclusion

TDCHEF theory is shown to yield fairly accurate estimates of transition properties
of open shell system including transition energies and the effective quantum of
the Rydberg orbitals. The theory gives good transition properties except in those
cases where configuration mixing from singly excited configurations is very
important. The analytic representations of the Rydberg orbitals in terms of Slater
bases may be obtained from the authors on request.
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